Vol. 1, Issue 3, pp.929-933

Effects of Process Parameters & Depth of Cut Model for Abrasive Waterjet Cutting of Ceramics

M. Chithirai Pon Selvan*, Dr. N. Mohana Sundara Raju**

*PhD Research Scholar, Karpagam University, Coiambatore, India.

** Principal, Mahendra Institute of Technology, Namakkal, India

ABSTRACT

Abrasive waterjet cutting is one of the non-traditional cutting processes capable of cutting wide range of hard-to-cut materials. This paper assesses the influence of process parameters on depth of cut which is an important cutting performance measure in abrasive waterjet cutting of ceramics. Experiments were conducted in varying water pressure, nozzle traverse speed, abrasive mass flow rate and standoff distance for cutting ceramics using abrasive waterjet cutting process. The effects of these parameters on depth of cut have been studied based on the experimental results. In order to correctly select the process parameters, an empirical model for the prediction of depth of cut in abrasive waterjet cutting of ceramics is developed using regression analysis. This developed model has been verified with the experimental results that reveal a high applicability of the model within the experimental range used.

Key words—abrasive waterjet, empirical model, ceramics, garnet, regression analysis.

1. Introduction

Abrasive waterjet cutting [AWJC] has various distinct advantages over the other non-traditional technologies, such as no thermal distortion, high machining versatility, minimum stresses on the work piece, high flexibility and small cutting forces and has been proven to be an effective technology for processing various engineering materials [1]. It is superior to many other cutting techniques in processing variety of materials and has found extensive applications in industry [2]. In this method, a stream of small abrasive particles is introduced in the waterjet in such a manner that waterjet's momentum is partly transferred to the abrasive particles. The main role of water is primarily to accelerate large quantities of abrasive particles to a high velocity and to produce a high coherent jet. This jet is then directed towards working area to perform cutting [3]. It is also a cost effective and environmentally friendly technique that can be adopted for processing number of engineering materials particularly difficult-to-cut materials such as ceramics [4], [5]. However, AWJC has some limitations and drawbacks. It may generate loud noise and a messy working environment. It may also create tapered edges on the kerf, especially when cutting at high traverse rates [6], [7]. As in the case of every machining process, the quality of

AWJC process is significantly affected by the process tuning parameters [8], [9]. There are numerous associated parameters in this technique, among which water pressure, abrasive flow rate, jet traverse rate, standoff distance and diameter of focusing nozzle are of great importance but precisely controllable [10], [11]. The main process quality measures include attainable depth of cut, kerf width and surface finish. Number of techniques for improving kerf quality and surface finish has been proposed [10]-[13]. In this paper depth of cut is considered as the performance

measure as in many industrial application it is the main constraint on the process applicability. In order to effectively control and optimize the AWJC process, predictive models for depth of cut have been already developed for aluminum, stainless steel, brass, copper, titanium etc. [14]-[16]. But no such models have been developed for ceramics considered in this study. More work is required to fully understand the influence of the important process parameters on depth of cut of ceramics. This paper assesses the influence of abrasive waterjet cutting process parameters on depth of cut of ceramics. An empirical model for the prediction of depth of cut in AWJC process of ceramics is developed using regression analysis. The model is then experimentally verified when cutting ceramics within the practical range of process variables.

2. EXPERIMENTAL WORK

2.1 Material

The material considered in this study is ceramics. The use of advanced ceramics for a variety of high performance application in various industries has ushered the need for high precision material removal processes for processing ceramics. This is on account of their merits of hardness, corrosion resistance, electromagnetic response and biocompatibility. Ceramic tiles of modulus of elasticity = 230,000 MPa and material flow stress = 20,100 MPa were used as the specimens. The dimensions of these ceramic tiles were $150 \times 100 \times 25.4$ mm.

2.2 Equipment

The equipment used for machining the samples was Water

M. Chithirai Pon Selvan, Dr. N. Mohana Sundara Raju/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.929-933

Jet Sweden cutter which was equipped with KMT ultrahigh pressure pump with the designed pressure of 4000 bar. The machine is equipped with a gravity feed type of abrasive hopper, an abrasive feeder system, a pneumatically controlled valve and a work piece table with dimension of 3000 mm x 1500 mm. Sapphire orifice was used to transform the high-pressure water into a collimated jet, with a carbide nozzle to form an abrasive waterjet. The schematic of an abrasive waterjet cutting process is shown in fig.1.

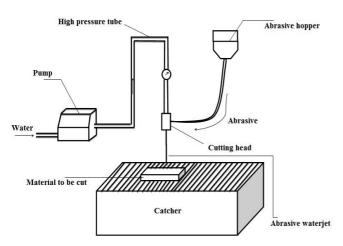


Fig 1. Schematic of an abrasive waterjet cutting process

Throughout the experiments, the nozzle was frequently checked and replaced with a new one whenever the nozzle was worn out significantly. The abrasive waterjet cutting head is shown in fig.2.

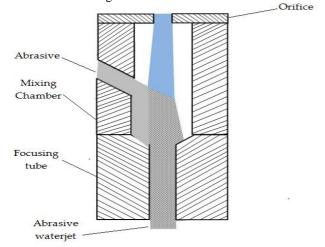


Fig. 2. Abrasive waterjet cutting head

The abrasives were delivered using compressed air from a hopper to the mixing chamber and were regulated using a metering disc. The abrasive waterjet pressure is manually controlled using the pressure gauge. The standoff distance is controlled through the controller in the operator control stand. The traverse speed was controlled automatically by the abrasive waterjet system programmed by NC code. The debris of material and the slurry were collected into a catcher tank.

2.3 Design of Experiments (DOE)

To achieve a thorough cut it was required that the

combinations of the process variables give the jet enough energy to penetrate through the specimens. In the present study four process parameters were selected as control factors. The parameters and levels were selected based on the literature review of some studies that had been documented on AWJC on graphite/epoxy laminates [17], metallic coated sheet steels [18] and fiber-reinforced plastics [19]. Taguchi's experimental design was used to construct the design of experiments (DOE). Four process parameters, i.e. water pressure, nozzle traverse speed, mass flow rate of abrasive particles and standoff distance each varied at three levels as shown in table 1, an L_{81} (3⁴) orthogonal arrays table with 81 rows corresponding to the number of experiments was selected for the experimentation.

Table 1 Levels of parameters used in experiment

Parameters	level 1	level 2	level 3
Water pressure (MPa)	275	334	393
Traverse speed (mm/s)	6.6	5.6	4.6
Mass flow rate (g/s)	4	6.9	9.8
Standoff distance (mm)	5	3.4	1.8

The parameters that were kept constant during tests included the jet impact angle at neutral nozzle position (90°), orifice diameter (0.35 mm), nozzle diameter (1.05 mm), abrasive material (garnet particles with the density of 4100 kg/m³) and average diameter of abrasive particles (0.18 mm). For each experiment, the machining parameters were set to the pre-defined levels according to the orthogonal array. All machining procedures were done using a single pass cutting. For each cut, at least three measures were made and the average was taken as the final reading to minimize the error.

3. EXPERIMENTAL RESULTS AND DISCUSSION

By analysing the experimental data, it has been found that the effects of the four basic parameters, i.e., water pressure, abrasive mass flow rate, nozzle traverse speed and nozzle standoff distance on the depth of cut are in the same fashion as reported in previous studies for other materials [20]-[22]. The effect of each of these parameters is studied while keeping the other parameters considered in this study as constant.

3.1 Effect of Water Pressure on Depth of Cut

The influence of water pressure on the depth of cut is shown in fig. 3. Results indicate that, within the operating range selected, increase of water pressure results in increase of depth of cut when mass flow rate, traverse speed and standoff distance were kept constant. When water pressure is increased, the jet kinetic energy increases that leads to more depth of cut.

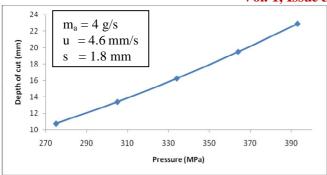


Fig. 3. Water pressure versus depth of cut

3.2 Effect of Mass Flow Rate on Depth of Cut

Increase in abrasive mass flow rate also increases the depth of cut as shown in fig. 4. This is found while keeping the pressure, traverse speed and standoff distance as constant. The impact between the abrasive particle and the material determines the ability of the abrasive waterjet to cut the material. Since cutting is a cumulative process, the speed of the abrasive particle and the frequency of particle impacts are both important. The speed of the particle determines the impulsive loading on the material and the potential energy transfer from the particle to the material. The frequency of the impact determines the rate of energy transfer and hence, the rate of cut depth growth. The mass flow rate of the abrasive particles partially determines the frequency of the impacting particles and partially determines the speed at which they hit. In addition, with the greater mass flow rates, the kinetic energy of the water must be spread over more particles. Therefore, the depth of cut goes down with the increased mass flow rate.

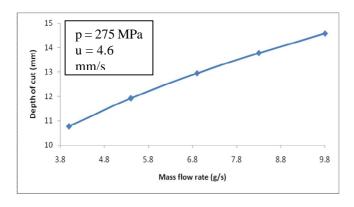


Fig. 4. Abrasive mass flow rate versus depth of cut

3.3 Effect of Traverse Speed on Depth of Cut

Traverse speed is the advance rate of nozzle on horizontal plane per unit time during cutting operation. Results indicate that increase of traverse speed decreases the depth of cut within the operating range selected, by keeping the other parameters considered in this study as constant. The longer the abrasive waterjet stays at a particular location, the deeper the cut will be because the stream of abrasive particles has more time to erode the material. This effect is due to two reasons. First the longer the dwell time the greater the number of impacting abrasive particles hit the material and the greater the micro damage, which starts the erosion

process.

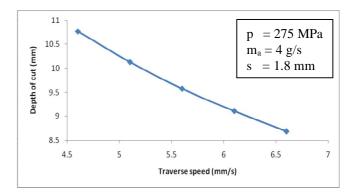


Fig. 5. Traverse speed versus depth of cut

Secondly, the water from the jet does have a tendency to get into the micro cracks and because of the resulting hydrodynamic pressure, the crack growth results. When the micro cracks grow and connect, the included material will break loose from the parent material and the depth of cut increases. For this reason, it seems reasonable to expect an inverse relationship between the traverse speed and the depth of cut as shown in fig. 5.

3.4 Effect of Standoff distance on Depth of Cut

Standoff distance is the distance between the nozzle and the work piece during cutting operation. If we keep other operational parameters constant, when standoff distance increases, depth of cut decreases as shown in fig. 6. However standoff distance on depth of cut is not much influential when compared to the other parameters considered in this study.

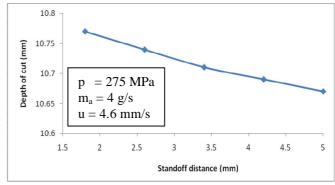


Fig. 6. Standoff distance versus depth of cut

4. EMPIRICAL MODEL FOR DEPTH OF CUT

Mathematical model for the depth of cut is empirically developed based on the experimental data set by using regression analysis technique as shown in (1). This model relate the depth of cut to four process variables, namely water pressure, nozzle traverse speed, nozzle standoff distance and abrasive mass flow rate.

Vol. 1, Issue 3, pp.929-933

$$D_{c} = 9.989 \times 10^{5} \times \frac{m_{a}}{\rho_{w} d_{\mu}} \times (\frac{p}{E})^{1.984} \times (\frac{s}{d_{p}})^{0.064} \times (\frac{s m_{a}}{d_{p}^{3} \rho_{p} \mu})^{-0.066} \times (\frac{\rho_{p} \mu^{2}}{p})^{-0.129} - \dots (1)$$

where D_c , d_j , d_p and s are in meters, m_a is in kg/s, u is in m/s, ρ_p and ρ_w are in kg/m³, p and E are in MPa. The above model is valid for the operating parameters in the following range for practical purposes and machine limitations:

270 MPa
$$\square$$
 p \square 400 MPa

$$4.2 \text{ mm/s} \square \text{ u} \square 6.6 \text{ mm/s}$$

and

$$4 \text{ g/s} \square \text{ m}_{a} \square 10 \text{ g/s}$$

To facilitate the understanding of the effect of the process parameters, the above equation may be re-arranged as in (2)

$$D_c = 9.989 \times 10^5 \times \frac{p^{2.113} m_a^{0.337} d_p^{1.335} \rho_p^{0.534}}{E^{1.984} u^{0.595} s^{0.009} \rho_w d_j} - - - (2)$$

5. MODEL ASSESSMENT

The above developed model in eq. (2) has been assessed both qualitatively and quantitatively with the experimental results. It is shown that the model predictions are in good agreement with the experimental data with the average deviations of about 4%.



Fig. 7. Comparision of experimental and predicted values of depth of cut

6. CONCLUSION

Experimental investigations have been carried for the depth of cut in abrasive waterjet cutting of ceramics. The effects of different operational parameters such as: pressure, abrasive mass flow rate, traverse speed and nozzle standoff distance on depth of cut have been investigated. As a result of this study, it is observed that these operational parameters have direct effect on depth of cut. From the experimental results an empirical model for the prediction of depth of cut in AWJC process of ceramics has been developed using regression analysis. Also verification of the developed model for using it as a practical guideline for selecting the parameters has been found to agree with the experiments.

Nomenclature

- D_c depth of cut (mm)
- m_a mass flow rate of abrasive particles (g/s)
- ρ_p density of particle (kg/m³)
- $\rho_{\rm w}$ density of water (kg/m³)
- d_i diameter of jet (mm)
- d_p average diameter of particle (mm)
- u traverse speed of nozzle (mm/s)
- p water pressure (MPa)
- E modulus of elasticity of material (MPa)
- s standoff distance (mm)

REFERENCES

- [1] Hascalik, A., Caydas, U., Gurun, H. "Effect of traverse speed on abrasive waterjet machining of Ti-6Al-4V alloy". *Meter. Des.* 28: pp 1953-1957, 2007.
- [2] Momber, A., Kovacevic, R. "Principles of Abrasive Waterjet Machining". Springer-Verlag, London, 1998.
- [3] Hashish M. "A model for abrasive waterjet (AWJ) machining". Transactions of ASME Journal of Engineering Materials and Technology, vol. III: pp 154-162, 1989.
- [4] Siores E., Wong W C K., Chen L., Wager J G. "Enhancing abrasive waterjet cutting of ceramics by head oscillation techniques". *Ann CIRP*, 45[1]: pp 215-218, 1996.
- [5] Wang J. "Abrasive Waterjet Machining of Engineering Materials". Uetikon-Zuerich [Swizerland]: Trans Tech Publications, 2003.
- [6] M.A. Azmir, A.K. Ahsan. "Investigation on glass/epoxy composite surfaces machined by abrasive waterjet machining". *Journal of Materials Processing Technology*, vol. 198, pp 122-128, 2008.
- [7] C. Ma, R.T. Deam. "A correlation for predicting the kerf profile from abrasive waterjet cutting". *Experimental Thermal and Fluid Science*, vol.30, pp 337-343, 2006.
- [8] Kovacevic R. "Monitoring the depth of abrasive waterjet penetration". *International Journal of Machine Tools & Manufacture, vol 32(5), pp 725-736, 1992.*
- [9] Hashish, M. "Optimization factors in abrasive waterjet machining". *Transaction of ASME J. Eng. Ind. 113: pp* 29-37, 1991.
- [10] John Rozario Jegaraj J., Ramesh Babu N. "A soft computing approach for controlling the quality of cut with abrasive waterjet cutting system experiencing orifice and focusing tube wear", *Journal of Materials Processing Technology*, vol.185, no.1–3: pp 217–227, 2007.
- [11] Shanmugam D. K., Wang J., Liu H. "Minimization of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique". *International Journal of Machine Tools and Manufacture 48: pp 1527–1534, 2008.*
- [12] Shanmugam D. K., Masood S. H. "An investigation of kerf characteristics in abrasive waterjet cutting of layered composites". *International Journal of Material Processing Technology* 209: pp 3887–3893, 2009.
- [13] E. Lemma, L. Chen, E. Siores, J. Wang. "Optimising the AWJ cutting process of ductile materials using nozzle

M. Chithirai Pon Selvan, Dr. N. Mohana Sundara Raju/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.929-933

- [14] oscillation technique". *International Journal of Machine Tools and Manufacture 42: pp 781–789, 2002.*
- [15] Wang J. "Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics". *International Journal of Mechanical Sciences 49: pp 306–316, 2007.*
- [16] Farhad Kolahan, Hamid Khajavi A. "A statistical approach for predicting and optimizing depth of cut in AWJ machining for 6063-T6 Al alloy". World Academy of Science, Engineering and Technology 59, 2009.
- [17] M.Chithirai Pon Selvan, Dr. N. Mohana Sundara Raju., "Selection of process parameters in abrasive waterjet cutting of copper", *International Journal of Advanced Engineering Sciences and Technologies, vol 7, issue 2:* pp 254-257,2011.
- [18] Arola D, Ramulu M. "A study of kerf characteristics in abrasive waterjet machining of graphite/epoxy composites". *ASME Mach. Adv. Comp.* 45(66): pp 125-151, 1993.
- [19] Wang J, Wong W C K. "A study of waterjet cutting of metallic coated sheet steels". *International Journal of Mach. Tools Manuaf, 39: pp 855-870, 1999.*
- [20] Hocheng H, Tsai H Y, Shiue J J, Wang B. "Feasibility study of abrasive waterjet milling of fiber-reinforced plastics". *Journal of Manuf. Sci.Eng.*, 119: pp 133-142.1997
- [21] Wang J, Kuriyagawa T, Huang C Z. "An experimental study to enhance the cutting performance in abrasive waterjet machining". *Machining Science & Technology*, 7: pp 191-207, 2003.
- [22] Wang J, Xu S. "Enhancing the AWJ cutting performance by multi pass machining with controlled oscillation". *Key Engineering Materials*, 291-292: pp 453-458, 2005.
- [23] Shanmugam D. K., Masood S. H. "An investigation on kerf characteristics in abrasive waterjet cutting of layered composites". *Journal of materials processing technology*, 209: pp 3887-3893. 2009.